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Abstract: Stem cell laboratories around the world routinely generate whole-genome expression data to study 
systems-level processes in stem cell biology, and computational clustering methods are critical for the genome-wide 
analysis of such large data sets. To address major limitations with commonly used clustering approaches, we 
developed a novel computational method called AutoSOME to automatically cluster large, high-dimensional data 
sets, such as whole-genome microarray expression data, without prior knowledge of cluster number or structure. In 
previous work we demonstrated that AutoSOME clustering is an effective method for studying genome-wide 
expression patterns in stem cells. Here we present a primer that describes how to use this new method to perform 
comprehensive cluster analyses of stem cell gene expression data. We include two detailed protocols illustrating the 
identification of gene co-expression modules and clusters of cellular phenotypes in a single step (Protocol 1), and 
the visualization of transcriptome variation among stem cells using an intuitive network display (Protocol 2). The 
workflow described in this chapter is sufficiently general for use with a wide variety of in-house and publicly 
available genomics data sets. 
 

 
Introduction 
Stem cells have significant potential for elucidating fundamental mechanisms of developmental 
and disease biology, and are widely believed to hold great promise for regenerative medicine. In 
recent years, activity in stem cell research has greatly accelerated, owing largely to the advent of 
cellular reprogramming [1], an increase in funding (see [2] and [3]), and the use of systems-level 
technologies to characterize the pluripotent state (e.g. [4-9]). For example, since the successful 
generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts in 2006 [1], 
increasingly effective strategies have been devised for creating iPSCs from various progenitor 
cells (e.g. [10-12]), and viable mice were born from iPSC-derived embryos [13]. Important 
insights have also been made with regard to similarities and differences in gene expression [6, 
14-17] and methylation patterns of iPSCs compared to embryonic stem cells (ESCs) [8, 18-19]. 
In addition, key components of pluripotency regulatory networks are being defined (e.g. Oct4 
[20], p53 [21], miRNA-145 [22]), and the cellular and molecular aspects of tissue regeneration 
are being elucidated [23, 24].  
 
Many laboratories now utilize powerful functional genomics approaches to dissect the systems-
level processes underlying stem cell biology. Such high-throughput strategies, including 
conventional microarrays, SNP [9] and miRNA [6] arrays, ChIP-on-chip [4], CHARM 
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methylation profiling [8], and massively parallel sequencing [7] yield very large data sets that are 
generally deposited with online repositories such as the Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/) or the ArrayExpress archive 
(http://www.ebi.ac.uk/microarray-as/ae/). Primarily consisting of whole-genome microarray 
outputs, these pluripotent stem cell data sets have grown in number about three-fold every two 
years, from five GEO data sets in 2005 to fifty in 2009. Importantly, archived data sets can be 
reanalyzed to gain new insights into systems-level stem cell biology (e.g. [14, 16-18]), and thus 
represent a valuable resource for the stem cell community.  
 
Without the analytical power of computational and statistical methods, large genomics data sets 
are virtually impossible to interpret and thus of limited utility. Unsupervised clustering is one 
widely used strategy applied to large data sets for identifying groups of similar patterns, such as, 
for example co-regulated transcripts (for review, see [25]). Although many kinds of unsupervised 
clustering methods are available, commonly used approaches, like K-Means and Hierarchical 
clustering, have major limitations for identifying natural data clusters. For instance, K-Means is 
restricted to symmetrical clusters, is unable to detect outlier data points, and requires prior 
knowledge of cluster number or use of an external cluster number prediction method [26]. 
Hierarchical clustering methods, such as those implemented in Eisen’s widely used Cluster 3.0 
software [27], are also unable to identify the number of clusters [28], make irreversible local 
decisions that can decrease cluster quality [29], and are inefficient on large genomics data sets 
[28]. These methods, and many others (see [30]), are less than ideal for researchers seeking to 
identify and study biologically meaningful patterns from the large amounts of data generated by 
high-throughput technologies.  
 
To address limitations with the most commonly used clustering strategies, we recently developed 
and validated a new computational method, called AutoSOME, capable of identifying data 
clusters of diverse geometries from large high-dimensional data sets without prior knowledge of 
cluster number or structure [31]. The AutoSOME method is based on a serial application of well-
established techniques from different fields, including machine learning, cartography, and graph 
theory. As demonstrated by the finding of a large protein-protein interaction (PPI) network up-
regulated in pluripotent stem cells [31] and by the finding that pluripotent stem cells exhibit lab-
specific gene expression signatures [17], AutoSOME provides a valuable approach for analyzing 
the genetic relationships among different cell lines from large genomics data sets. The 
AutoSOME method is implemented in Java and packaged within a Graphical User Interface 
(GUI) to accommodate end-users with diverse backgrounds using diverse computer operating 
systems (http://jimcooperlab.mcdb.ucsb.edu/autosome).  
 
Here we propose a standard protocol for whole-genome expression analyses based on 
AutoSOME clustering, and present a primer illustrating the use of the AutoSOME GUI for 
exploring stem cell gene expression data. Although the protocols in this chapter utilize specific 



Stem Cell Gene Expression Analysis using AutoSOME    Computational Biology of Embryonic Stem Cells    3 

publicly available microarray data sets, the workflow is sufficiently general for use with any 
number of diverse in-house or publicly available gene expression data. Key steps preceding 
cluster analysis are described first, including how to import, filter, and normalize microarray 
gene expression data using built-in GUI functions. Major cluster parameters are subsequently 
reviewed followed by two detailed examples that demonstrate how to perform an AutoSOME 
cluster analysis on stem cell microarray data. 
 
 
Importing Gene Expression Data 
AutoSOME accepts two major input file formats. The first input format is a table of numerical 
values, as shown in table 1, with one column of unique gene labels (left column) and one row of 
array labels (top row). All entries must be tab, comma, or space delimited. The second major 
input format, called a Gene Expression Omnibus Series Matrix File, available online at 
http://www.ncbi.nlm.nih.gov/geo/, consists of normalized gene expression data generated from a 
microarray experiment deposited in the GEO archive. AutoSOME can automatically extract 
expression data and column names from a series matrix file, allowing for rapid microarray re-
analysis and meta-analysis. Once imported, gene expression data are represented as a matrix 
composed of n data rows, or gene probes, and m data columns, or arrays. 
 
Table 1: Basic Input Format. 
 

Probe hESC-1 hESC-2 hESC-3 hESC-4 iPSC-1 iPSC-2 iPSC-3 

212853_at 8.22 8.29 7.69 8.22 10.13 10.26 10.22 

212854_x_at 8.52 8.71 8.04 9.00 8.88 8.97 9.08 

212855_at 10.64 10.41 10.60 11.04 12.09 11.91 12.05 

 
 
Microarray Data Preprocessing 
To reduce noise and increase cluster quality, several preprocessing procedures for gene probe 
filtration and microarray normalization are available in the AutoSOME GUI. The procedures 
described below are tailored for intensity microarray data. For two-colored expression data, 
different normalization steps will be required.  
 
Data Filtration 
Gene probe filtration is a common preprocessing step for whole-genome microarray data cluster 
analysis. By removing gene probes corresponding to transcripts with low background-level 
expression or low variance across experiments, filtration can decrease algorithm running time 
and increase the overall signal-to-noise ratio. Filtration options currently available in the 
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AutoSOME GUI are the removal of transcripts with a fold change less than X and/or the removal 
of transcripts with a mean expression value below some threshold Y.  
 
Normalization 
Normalizing microarray data is an essential preprocessing step to remove technical bias and 
mitigate the impact of outlier data points on cluster identification. Unfortunately, the most 
appropriate normalization protocol is not always straightforward (especially to end-users without 
knowledge of the various normalization techniques commonly employed). The AutoSOME GUI 
implements several major normalization methods for data clustering, each of which is described 
below with recommendations for proper usage (G=recommended for clustering genes, or data 
rows; A=recommended for clustering arrays, or data columns). All operations are performed in 
the order listed, from top to bottom. (For technical descriptions, see the manual to the Cluster 
software [27] at http://rana.lbl.gov/manuals/ClusterTreeView.pdf) 
 
Log2 Scaling (G, A) 
By amplifying small-scale changes in gene expression, log2 scaling prevents transcripts with low 
levels of expression from being overshadowed by more highly expressed transcripts. Since 
AutoSOME works best in the log space, this data adjustment strategy should be used whenever 
expression values span several orders of magnitude over the entire microarray data set (e.g. 0.3-
20,000). Importantly, unlike data normalization methods, log2 transformation is a scaling 
procedure that is completely reversible.  
 
Unit Variance (G, A) 
Based on the assumption that all arrays have a normal distribution, this technique standardizes all 
arrays to zero mean expression and a standard deviation of one. When there is no a priori reason 
to treat any array differently from any other, we strongly recommend using unit variance 
normalization (even after raw microarray data have been pre-normalized by RMA, MAS5, etc.). 
 
Median Centering (G) 
Median centering sets the median of each row and/or column equal to zero. In the context of 
microarrays, this procedure centers the expression pattern, or "waveform," of each gene (or 
array) so that expression patterns can be isolated and compared without being affected by 
differences in transcript abundance. We highly recommend applying median-centering to rows in 
all cases where AutoSOME will be used to identify genes with similar co-expression signatures.  
 
Sum of Squares=1 (G) 
Sum of Squares=1 normalization yields substantial data smoothing by setting the sum of squares 
(x2) of all expression values equal to 1 for each gene over all arrays and/or each array over all 
genes. The impact of this method on cluster identification can be significant and tends to result in 
the detection of large coherent clusters trailing off into genes with minimal differential 
expression (background noise can be removed by filtering the data prior to clustering or by using 
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the AutoSOME confidence filter after clustering, see confidence filter in the online AutoSOME 
manual at http://jimcooperlab.mcdb.ucsb.edu/autosome/files/AutoSOME_Manual.pdf. For an 
example of clusters identified using sum of squares normalization, see the heat map presented in 
Figure 6A of [31]. We recommend applying sum of squares normalization to both rows and 
columns whenever AutoSOME is used to cluster a microarray data set that has been previously 
filtered to remove genes with minimal variance (see Data Filtration above). 
 
For additional data adjustment options, one can use Microsoft Excel or the Cluster 3.0 software 
tool [17] before importing the data into AutoSOME.  
 
Materials 
For the protocols described herein, the following software and data sets are needed: 
 
AutoSOME and Java 
Download AutoSOME from http://jimcooperlab.mcdb.ucsb.edu/autosome/download.jsp. Since 
AutoSOME is coded in Java, in principle, it can be run using any operating system with Java 
Standard Edition (Java SE) 1.6+, available from 
http://www.oracle.com/technetwork/java/index.html. In general, we recommend using a 
computer with at least 1.6GB RAM and at least a dual-core CPU. Of course, the more memory 
and dedicated cores, the better the performance. Microarray data sets like the Affymetrix HG-
U133plus2 chipset (>54k probes) with dozens of samples can be run with 1.6GB RAM 
(maximum RAM that can be allocated for 32-bit Java systems), however, large data sets with 
many arrays (e.g. >200) will benefit from the additional RAM made possible by systems with the 
64-bit Java Runtime Environment (up to ~30GB RAM).  
 
Cytoscape 
To run the second protocol, Cytoscape 2.6.0 [32], a network visualization tool, needs to be 
installed on your computer (download from http://cytoscape.org/download_list.php). Although 
recent versions of Cytoscape are available (2.6.1 to 2.7.0), to display straightened edges in the 
fuzzy cluster network visualization introduced in Protocol 2, Cytoscape 2.6.0 is currently needed.  
 
Microarray Data 
The protocols in this book chapter make use of two publicly available GEO data sets, GSE22651 
(http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE22651) and GSE19164 
(http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE19164). The hyperlink for the 
Series Matrix File corresponding to each data set is located at the bottom of the GEO data set 
page under Download family. Unzip each Series Matrix File using a decompression tool that can 
handle the ‘.gz’ format (e.g., ‘WinRaR’, available at http://www.rarlab.com) and save it to your 
hard drive. 
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Running AutoSOME 
AutoSOME can be launched from the AutoSOME website via Java Web Start, or by 
downloading the executable. To use the downloadable version 
(http://jimcooperlab.mcdb.ucsb.edu/autosome/download.jsp), unzip all contents to the same 
directory. If you are using Windows, you can run AutoSOME by double-clicking on one of the 
two batch files that come with the download (e.g. runautosome-win32-maxRAM.bat). 
Otherwise, using your system terminal, navigate to the directory where you installed 
AutoSOME, and run the following command: 
java   -Xmx1600m   -Xms1600m   -jar    autosome_vXXXXXX.jar  
(where XXXXXX = MMDDYY represents the date of compilation (e.g. 080110)). Since 
AutoSOME has not been internationalized, if you are using a computer with a primary language 
other than English, insert ‘-Duser.language=en’ before ‘-jar’ (otherwise number representation 
issues can arise). The -Xmx, -Xms arguments allocate additional memory (in megabytes) to 
AutoSOME for running large datasets. All, or most, available memory should be allocated. In 
operating systems running 32-bit Java, the maximum amount of memory that can be allocated to 
AutoSOME is about ~1.6 GB, while operating systems running 64-bit Java can allocate up to 
~30 GB of memory. To see which Java version is installed on your computer, launch a terminal 
window and type “java -version”. 
 
 

 
Figure 1: Layout of AutoSOME GUI main window. 
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Basic Parameters 
A screenshot of the AutoSOME GUI layout is presented in Fig. (1). We recommend reviewing 
the basic AutoSOME parameters, described in this section, before running the protocols in this 
chapter. These parameters control key aspects of the AutoSOME cluster analysis, including 
whether AutoSOME will cluster genes and/or array experiments, how long AutoSOME will take 
to run, and the statistical significance, or granularity, of the cluster output. This section reviews 
the ‘Basic Fields’ parameters: Cluster Analysis, Running Mode, No. Ensemble Runs, P-value 
Threshold, and No. CPUs (see Basic Parameters in Fig. 1).  
 
Cluster Analysis 
Use the Cluster Analysis combo box to switch among clustering rows (genes), columns (arrays), 
or both (genes followed by arrays).  
 
Running Mode 
Use the Running Mode combo box to select among ‘Precision’, ‘Normal’, or ‘Speed’ modes of 
operation. Each mode specifies different parameters for two major components of the 
AutoSOME method, Self-Organizing Map (SOM, see [33]) and density-equalization. Greater 
training of the SOM and greater resolution of density-equalization can lead to more accurate 
delineation of cluster boundaries. The ‘Precision’ mode takes longest (SOM=2X1000 iterations, 
density-equalization resolution=64X64), but has the best chance of resolving difficult cluster 
borders. On the other hand, ‘Speed’ (SOM iterations=2X250, density-equalization 
resolution=16X16) is very rapid, and is useful for first-pass exploratory cluster analysis. In our 
experiments, a compromise between the two extremes, ‘Normal’ (SOM iterations=2X500, 
density-equalization resolution=32X32), generally yields comparable results to ‘Precision’ with 
the benefit of increased speed. Depending upon desired expediency, we recommend selection of 
either ‘Normal’ or ‘Precision’ for final clustering results.  
 
Ensemble Runs 
AutoSOME stochastically samples a large cluster space and makes use of an ensemble averaging 
procedure to stabilize the cluster output. As demonstrated in Newman and Cooper, 2010a, 
increasing ensemble iterations can dramatically reduce output variance and increase cluster 
quality. Additional ensemble stability tests indicate that gene co-expression clusters in noisy 
whole-genome microarray data exhibit the greatest gain in cluster stability by 50 ensemble 
iterations (data not shown). Co-expression clusters continue to gradually stabilize with increasing 
iterations past 50. While the default of 50 ensemble iterations is enough to investigate the cluster 
structure of most data sets, we recommend using less ensemble iterations (e.g. 10-20) for a first-
pass exploratory analysis and using 100-500 iterations for a final clustering. 
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P-Value Threshold 
A critical step of the AutoSOME method involves partitioning a graph containing all input data 
points into a set of data clusters. The p-value threshold allows the data graph to be cut into 
statistically significant clusters based on a simulated null hypothesis of random data points. The 
smaller the p-value the tighter (and smaller) the resulting clusters. A default threshold of ≤0.1 
has been extensively benchmarked to yield consistently good accuracy on a wide variety of 
clustering problems (see [31]). Lower the p-value threshold for increasingly challenging datasets 
or increasingly fine-grained clusters.  

 
No. CPUs 
Due to the ensemble averaging step, AutoSOME running time will decrease linearly with respect 
to an increasing number of dedicated CPUs, and thus, all available CPU cores are allocated by 
default.  
 
Protocols 
This section consists of two general protocols that illustrate the use of AutoSOME for large-scale 
exploration of gene expression signatures. Both protocols make use of the publicly available 
software and data sets described in the Materials section (above). The first protocol demonstrates 
how to use AutoSOME to identify both gene co-expression modules and transcriptome clusters 
from publicly available microarray data. The second protocol shows how to use Cytoscape [32] 
to visualize stem cell transcriptome variation using an intuitive two-dimensional network 
schematic called a “fuzzy cluster network” (e.g. see Figure 3 in [17]).  
 
Protocol 1: AutoSOME Co-Expression and Transcriptome Clustering 
Here we show how to cluster both transcripts and transcriptomes in a single efficient step with 
the AutoSOME GUI. By executing this protocol, you will also be introduced to important output 
features of the AutoSOME GUI, including displaying and adjusting heat maps, and saving 
publication quality figures of the cluster output. Due to the inherent noise in microarray data sets 
and the stochastic component of AutoSOME, your cluster results may vary slightly (and only 
slightly) from those presented here. 
 
1) Launch AutoSOME and press the large ‘INPUT’ button (see Fig. 1). A file browser will 

appear. Select the ‘Gene Expression Omnibus Series Matrix File’ checkbox located in the 
data format box over the browsing window (otherwise there will be an input error). Browse 
to where you saved the GSE22651 text file (should have been saved as 
‘GSE22651_series_matrix.txt’, see Materials), select it, and press the ‘Open’ button.  
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2) The number of arrays (=65) and gene probes (=48,786), along with maximum and 
minimum data values, will be shown. You are asked whether you want to filter your data. 
Press ‘Yes’. A ‘Filter Data’ window will open. 

3) Since the expression values span a range of 26 to 27,446, the data have not been log2 
scaled. We can leave the corresponding checkbox deselected. To reduce the computational 
load and generate cleaner clusters, remove gene probes with a fold change (maximum over 
minimum value) less than 4. Press ‘Apply’ to preview the filtered data results. The filtered 
data set has 14,990 rows (gene probes). Press ‘Accept’.  

4) In the main GUI window, expand ‘Basic Fields’ by pressing ‘Show’. Since AutoSOME 
will be used to cluster both filtered transcripts and transcriptomes, select ‘Both’ from the 
‘Cluster Analysis’ combo box. ‘Basic Fields’ will expand to ‘Basic Fields (Rows)’ and 
‘Basic Fields (Columns)’. Under ‘Basic Fields (Rows)’, set ‘Running Mode’=Normal, ‘No. 
Ensemble Runs’ to 100, ‘P-value Threshold’ =0.1, and underneath in ‘Basic Fields 
(Columns)’, set ‘No. Ensemble Runs’ to 200 and ‘P-value Threshold’ =0.1.  

5) Expand ‘Input Adjustment’. Under ‘Input Adjustment (Rows)’, select ‘Log2 Scaling’, ‘Unit 
Variance’, ‘Median Centering’ of ‘Rows’, and ‘Sum Squares = 1’ ‘Both’. Under ‘Input 
Adjustment (Columns)’, select ‘Log2 Scaling’ and ‘Unit Variance’.  

Note: AutoSOME can also be used to cluster unfiltered microarray data (and even larger data sets).  In this 
case, ‘Sum of Squares=1’ normalization is not recommended. 

6) Press the large ‘RUN’ button. Progress and elapsed time are shown in the ‘Run Progress’ 
box located in the lower-left region of the main GUI window. Note that running time will 
vary depending upon the number of dedicated CPUs and CPU clock speed. (For this data 
set a typical run time of ~10 minutes should be expected using a 3GHz dual CPU 
computer.) 

Note: if AutoSOME does not finish, there may not be enough memory available. If you have more RAM on 
your computer, simply allocate additional RAM to AutoSOME at start-up (1.6GB is sufficient; see Running 
AutoSOME). There is also an option to write intermediate ensemble runs to disk (go to ‘Advanced 
Fields’>Memory from the main window of the GUI). If selected, a temporary folder will be created in the 
current working directory.  

7) Once clustering is finished, AutoSOME will write output files to disk (see table 2), and the 
main window will be redirected to the ‘Output’ tab. AutoSOME will identify 3 array (or 
transcriptome) clusters and approximately 42 gene (or co-expression) clusters. Co-
expression clusters are displayed as a list in the ‘Cluster Output’ tree with the number of 
transcripts in each cluster shown in parentheses. Select ‘cluster 1’ with your mouse. By 
default, a table of all gene probe labels in cluster 1 (along with cluster confidence values, 
see Newman and Cooper 2010a) will be displayed.  
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Table 2: AutoSOME Output Files. By default, all output files will be written to the parent directory of your input 
file. (‘MyInput’ = name of input file, ‘X’ = the number of ensemble runs, ‘Y’ = the p-value, and ‘Z’ = ‘rows’ or 
‘columns’ depending upon what whether genes or arrays were clustered, respectively (e.g. 
AutoSOME_GSE22651_E100_Pval0.1_rows.txt)). 
 

Cluster 
Rows or 

Columns? 
File Name Description Open in 

GUI? 

Either AutoSOME_MyInput_EX_PvalY_Z_summary.html 
List of all AutoSOME parameters, and 
cluster summary table for either row or 
column clustering 

No 

Either AutoSOME_MyInput_EX_PvalY_Z.html 
HTML version of all clusters and 
confidence values for either row or 
column clustering 

No 

Either AutoSOME_MyInput_EX_PvalY_Z.txt 

Text file of all AutoSOME clusters and 
confidence values for either row or 
column clustering (stores original data 
prior to normalization) 

Yes 

Both AutoSOME_MyInput_PvalY_rows_columns.txt 

Text file of all AutoSOME clusters and 
confidence values for both row and 
column clustering (stores original data 
prior to normalization) 

Yes 

Columns AutoSOME_MyInput_EX_PvalY_Edges.txt 
Fuzzy cluster network edges and edge 
weights for use with Cytoscape [Shannon 
et al., 2003] 

No 

Columns AutoSOME_MyInput_EX_PvalY_Nodes.txt 
Fuzzy cluster network nodes for use with 
Cytoscape [Shannon et al., 2003] No 

Columns AutoSOME_MyInput_EX_PvalY_Matrix.txt 

Fuzzy cluster network edge weights in 
matrix form (can be hierarchically 
clustered using Cluster 3.0 [27] and 
visualized in Java TreeView [34]) 

No 

 
8) While cluster 1 is still selected, select ‘View’>’heatmap’>’green red’ from the dropdown 

menu. A traditional heat map will be displayed. A scale-bar above the heat map shows the 
maximum and minimum normalized expression values. A cluster confidence vertical bar 
on the left side of the heat map indicates the confidence of each gene probe for its cluster 
(Fig. 2A, blue=100% confidence, red=0%, see Figure 2 in [31]). Since we clustered arrays 
as well as gene probes, white vertical bars are shown separating different array clusters 
(Fig. 2A).  

9) To display heat maps of more than one gene co-expression cluster simultaneously, hold 
Shift or Ctrl to select multiple clusters from the cluster list using your mouse. Let’s select 
clusters 1-10 (hold Shift). Since the heat map is too large to see all clusters without 
scrolling, go to ‘View’>’fit to screen’. Now all 10 co-expression clusters are visible 
separated by white bars (see Fig. 2A). (If some clusters extend beyond the display after 
using the fit screen function, the clusters at the bottom may be viewed by using the scroll 
bar, changing the image dimensions using the ‘image settings’ window (see below), or 
using the mouse scroll wheel.) 
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10) To more clearly visualize expression differences in the heat map, we can change the 
normalization settings and heat map contrast. Go to ‘View’>’settings’>’image settings’ to 
launch a new window. The ‘Image Settings’ window will appear showing a wide variety of 
adjustable display settings (Fig. 2B). To use the heat map to accurately display expression 
differences, we need show the data prior to normalization. To do this, select ‘Display 
Original Data’. Since the raw expression data span a very large range, select Log2 scaling. 
Next, select ‘Median Center Rows’ to center all gene probes. Finally, let us adjust the heat 
map contrast. You can slide the ‘Heat Map Contrast’ bar to the left (e.g. to 0.2) and let go, 
or for more precise contrast adjustment, select ‘Manually adjust range for contrast’ and 
input explicit minimum and maximum values, such as, for example, -2 to 2. For the typed-
in manual adjustments to take effect it is then necessary select the update button. Note that 
the color-bar in the heat map updates to reflect the new value range. Finally, switch to the 
‘Display Options’ tab and select ‘Hide Heat Map Row Labels’ to remove gene probe labels 
from the right side of the heat map (these cannot be seen at the current resolution). The heat 
map should look similar to the one shown in Fig. 2B. 

11) To save a high-resolution image of this heat map, increase the ‘Zoom Factor’ bar to 50 
(zoom factor is the width in pixels of each column in the heat map). Let’s leave the ‘Adjust 
Height’ bar the same since it was determined by the ‘fit to screen’ command (the height of 
each row in the heat map is determined by multiplying this number by the zoom factor). 
Press the ‘Save’ button at the bottom of the ‘Image Settings’ window to write the heat map 
to disk (Portable Network Graphics (PNG) format only). Although the image will overflow 
the display window, the entire image will be saved to file. In addition to being able save the 
heat map images created in the output window, AutoSOME automatically saves additional 
output files (see table 2). 

Anticipated Results 
The filtered GSE22651 data set has two large gene co-expression clusters that distinguish 
pluripotent stem cell lines from somatic cell lines (see Fig 2C). There are also three filtered 
transcriptome clusters, an undifferentiated pluripotent stem cell cluster and two somatic cell line 
clusters: a cluster of fibroblasts, mesenchymal cells, keratinocytes, and human umbilical vein 
endothelial chord cell lines, and a smaller cluster composed of transcriptomes representing lung, 
adipose, bladder, and ureter tissue samples. 
 
Next Step 
Try repeating this protocol using a p-value threshold of 0.05 for both rows and columns. You 
will notice that AutoSOME identifies tighter clusters, including a distinct keratinocyte 
transcriptome cluster, and a bladder and ureter transcriptome cluster. In addition, several tighter 
co-expression clusters are now resolved. Heat maps displaying clusters obtained with p-value 
thresholds 0.1 and 0.05 are shown in Figs. (2C) and (2D), respectively.
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Figure 2: AutoSOME co-expression and transcriptome clustering, related to Protocol 1. (A) Cluster list and heat 
map output, (B) Image settings window and renormalized cluster heat map, (C) Final heat map for 10 largest gene 
co-expression clusters at P < 0.1 with cellular phenotypes corresponding to each transcriptome cluster shown 
underneath, (D) Final heat map for 10 largest gene co-expression clusters at P < 0.05 with cellular phenotypes 
corresponding to each transcriptome cluster shown underneath,. To render heat maps shown in panels (C) and (D), 
follow protocol 1 through step 10 using the appropriate p-value, then reorder each cluster by decreasing variance: go 
to the ‘Display Options’ tab in the Image Settings window (panel B) and select ‘Sort by Decreasing Variance’ (you 
may need to press ‘Update’ if the heat map fails to refresh), and finally, follow step 11.  
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Protocol 2: Exploring Stem Cell Transcriptome Variation using a Fuzzy 
Cluster Network 
A powerful application of AutoSOME clustering, in addition to identifying discrete clusters of 
co-expressed genes (e.g. Fig 2C), is identifying data points with fractional membership to one or 
more clusters. Such “fuzzy clusters” are a natural way of representing the inherent noise in gene 
expression data, and importantly, when visualized as a network diagram, provide an intuitive 
schematic for displaying the relationships among the transcriptome clusters identified by 
AutoSOME. In the first part of this protocol, AutoSOME is used to cluster the transcriptomes of 
several pluripotent stem cell lines, including iPSCs generated from three different combinations 
of reprogramming factors [12]. Using the cluster results from part one, the second part of this 
protocol details how to create a fuzzy cluster network. Before proceeding, it would be useful to 
become familiar with the transcriptome clustering strategy utilized by AutoSOME, which 
involves the construction of a distance matrix of transcriptome profiles. 
 
Transcriptome Clustering using a Distance Matrix 
The number of microarray gene probes n is usually much greater than the number of arrays m. 
To decrease the computational load for clustering transcriptomes, AutoSOME does not directly 
cluster transcriptome profiles, but instead clusters a matrix representing pair-wise similarities of 
all transcriptomes. (This amounts to performing an All-against-All comparison of m array 
expression vectors to generate a similarity matrix of size m by m used for clustering.) Three 
common distance metrics (Euclidean, Pearson's, and uncentered correlation) for calculating 
transcriptome similarity are provided as a user-adjustable parameter. To access the ‘Distance 
Metric’ combo box, expand ‘Advanced Fields’ in the GUI main window and go to ‘Fuzzy 
Cluster Networks’. Euclidean distance is chosen by default due to superior results obtained from 
empirical testing (using microarray datasets with previously known classes of cell lines). With 
regard to Euclidean distance, similar transcriptomes have smaller distances between them. 
AutoSOME also implements Pearson's correlation and uncentered correlation metrics, both of 
which have a maximum of 1 (completely correlated) and minimum of -1 (inversely correlated). 
Unlike uncentered correlation, Pearson's correlation is insensitive to amplitude shifts, meaning 
that two transcriptomes with similar expression patterns but different amplitudes can still be 
highly correlated using Pearson’s method. For an excellent review of these three distance 
metrics, see [25].  
 
Protocol 2 Part 1: AutoSOME Transcriptome Clustering 

1) Launch AutoSOME and press the large ‘INPUT’ button (see Fig. 1). A file browser will 
appear. Select the ‘Gene Expression Omnibus Series Matrix File’ checkbox located in the 
data format box over the browsing window (otherwise there will be an input error). Browse 
to where you saved the GSE19164 text file (should be saved as 
‘GSE19164_series_matrix.txt’, see Materials), select it, and press the Open button. 
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2) You will be asked whether you want to filter the data. Press ‘No’.  

3) In the main GUI window, expand ‘Basic Fields’ by pressing ‘Show’. Since we are going to 
cluster cellular transcriptomes, select ‘columns’ from the ‘Cluster Analysis’ combo box. 
Set ‘Running Mode’=Normal, ‘No. Ensemble Runs’ to 500, and ‘P-value Threshold’ =0.1. 

4) Expand ‘Input Adjustment’. Since these expression data have not been log2 scaled, select 
‘Log2 Scaling’. Also, select ‘Unit Variance’. 

5) At this point, the distance matrix used for column clustering could be changed by 
expanding ‘Advanced Fields’ and picking another metric from the ‘Distance Metric’ 
combo box. We will use the default setting, Euclidean distance. 

6) Press the large ‘RUN’ button. 

7) After clustering is finished, output files will be written to disk (see table 2), and the main 
window will be redirected to the ‘Output’ tab. Select all clusters in the cluster list using 
your mouse (hold Shift), and select ‘View’>’heatmap’>’rainbow’ from the dropdown 
menu. The display should look like Fig. (3). The heat map shows the clustering of the 
Euclidean distance matrix of all arrays in the GSE19164 data set (see Choice of Distance 
Metric). Each transcriptome cluster is separated by a white horizontal bar. The Euclidean 
distance between any given pair of cellular transcriptomes can be inferred from the heat 
map by using the color bar. A distance of zero means that the two cell lines are identical by 
Euclidean distance (colored blue).  

 
 
Anticipated Results 
Four transcriptome clusters are identified, as shown in Fig. (3). Notice that ESCs and iPSCs 
cluster separately, and each cell type also has two distinct sub-clusters.  To explore relationships 
among each cluster, along with individual transcriptomes, proceed to part two (below). 
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Figure 3: Clustered Euclidean distance matrix of iPSC and ESC cell lines, related to Protocol 2 Part 1. 

 

Protocol 2 Part 2: Fuzzy Cluster Network 

The fuzzy cluster network has three major components: nodes, edges, and clusters. A node 
represents a particular transcriptome, usually labeled by cellular phenotype or time point. An 
edge is defined as a link between two transcriptomes (nodes). The edge weight represents the 
fraction of times over all ensemble runs that the pair of transcriptomes clustered together, minus 
0.5. For example, if two transcriptomes clustered together 80% of the time, or 0.8, the edge value 
will be 0.3. The full range of edge weights is thus -0.5 to 0.5. Finally, the clusters represent the 
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discrete clusters of transcriptomes identified by AutoSOME (e.g., see Fig. 3). For further details, 
see [31]. 

1) First, let’s modify the cell line labels from the GSE19164 data set so that they are short 
enough to display in the network. Using a spreadsheet editing program (e.g. Microsoft 
Excel), open the output file 
‘AutoSOME_GSE19164_series_matrix_E500_Pval0.1_Nodes.txt’ (for details of this 
output file, see table 2). Column 1 contains identifiers that link this file to the edges file. 
Column 2 contains cluster numbers and Column 3 contains cell line labels. In column 3, 
replace all iPSC lines with the first letter of each transcription factor so that lines 
overexpressing Oct4, Sox2, and Klf4 are denoted ‘OSK’, lines overexpressing Oct4, Sox2, 
Klf4, and Tbx3 are denoted ‘OSKT’, and lines overexpressing Oct4, Sox2, and Esrrb are 
denoted OSE. For ESC lines, let’s keep the cell type R1 and D3, and remove the remaining 
text to yield R1_ES and D3_ES. Save all three columns as a new text file, e.g. 
‘AutoSOME_GSE19164_series_matrix_E500_Pval0.1_Nodes_reformat.txt’. 

2) Launch Cytoscape (for download information, see Materials). In the ‘File’ dropdown 
menu, select the option to import a network from a table (Fig. 4A). Go to ‘Select File(s)’ 
and locate the AutoSOME output file containing all edges called 
‘AutoSOME_GSE19164_series_matrix_E500_Pval0.1_Edges.txt’ (for details of this 
output file, see table 2). Press ‘Open’. Set ‘Source Interaction’ to ‘Column 1’ and ‘Target 
Interaction’ to ‘Column 2’. Finally, click on Column 3 in the data Preview window to 
activate it (it will turn blue). Select ‘Import’, and finally, press ‘Close’. A raw network will 
appear as a grid. To render a network with detailed graphics, go to the dropdown menu and 
select ‘View’→’Show Graphics Details’. 

3) In the ‘File’ dropdown menu, select the option to import attributes from a table. Go to 
‘Select File(s)’ and locate the AutoSOME output file containing all nodes and modified cell 
line labels, ‘AutoSOME_GSE19164_series_matrix_E500_Pval0.1_Nodes_reformat.txt’. 
Select ‘Open’ and then ‘Import’. 

4) Change global properties of the network: In the Control Panel, select the VizMapperTM tab 
(Fig. 4B). Click in the ‘Defaults’ window (Fig. 4B, shows a source and target pair with a 
blue background). A new window will appear. Select the ‘Global’ tab in the bottom right. 
Change the background color to white. Go back to the ‘Node’ tab and change the 
NODE_BORDER_COLOR property to black and increase the ‘NODE_LINE_WIDTH’ to 
2. Change NODE_FONT_SIZE to 8. Press ‘Apply’. The network should look like Fig. 
(5A). 
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Figure 4: Cytoscape screenshots. (A) Import edges into network. (B) Major features of the Control Panel. 

5) Using the VizMapperTM tab: Next to ‘Node Label’, click ‘ID’ and select ‘Column 3’. All 
nodes should now be relabeled according to the original data labels. Minimize the ‘Node 
Label’ property by selecting the minus icon. The network will now look like Fig. (5B). 

6) Under ‘Unused Properties’ (Fig. 4B) find ‘Edge Color’ (top of list) and double-click it. 
Select ‘Column 3’ as a value. Then, select ‘Continuous Mapper’ for ‘Mapping Type’. Click 
on the black-to-white gradient next to ‘Graphical View’ to launch a Gradient Editor. There 
are two fixed triangles, one on each end, and two adjustable triangles. Double-click the two 
leftmost triangles and set their colors to pure red (255, 0, 0). Double-click the two 
rightmost triangles and set their colors to pure blue (0, 0, 255). Drag the leftmost adjustable 
triangle all the way to the left and likewise drag the rightmost triangle to the right until it 
stops. Exit ‘Continuous Editor’. 

7) Find ‘Edge Line Width’ under ‘Unused Properties’ and double-click it. Select ‘Column 3’ 
as a value. Then, select ‘Continuous Mapper’ for ‘Mapping Type’. Click on the graph next 
to the ‘Graphical View’ property to launch the ‘Continuous Editor’. Adjust the minimum 
and maximum values denoted by red squares (double-click on squares for precision, 
otherwise slide squares up or down). For example, set minimum to 0.5 and maximum to 10. 
Then, exit ‘Continuous Editor’. 

8) Find ‘Edge Opacity’ under ‘Unused Properties’ and double-click it. Select ‘Column 3’ as a 
value. Then, select ‘Continuous Mapper’ for ‘Mapping Type’. Click on the graph next to 
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the ‘Graphical View’ property to launch the ‘Continuous Editor’. Adjust the minimum and 
maximum values denoted by red squares (double-click on squares for precision, otherwise 
slide squares up or down). For example, set minimum to 0.5 and maximum to 150. Then, 
exit ‘Continuous Editor’. 

9) Finally, find ‘Node Color’ under ‘Unused Properties’ and double-click it. Select ‘Column 
2’ as a value. Then, select ‘Discrete Mapper’ for ‘Mapping Type’. Right click on ‘Discrete 
Mapping’ and go to ‘Generate Discrete Values’→’Rainbow 1’. All nodes are now colored 
according to cluster labels. Adjust colors as desired. The network should now look like Fig. 
(5C). 

10) Select ‘Layout’ in the dropdown menu (top of main window) and select ‘Settings’. Choose 
‘Force-Directed Layout’ for ‘Layout Algorithm’. Under ‘Edge Weight Settings’, select 
Column 3 from ‘The edge attribute that contains the weights’,  set ‘The minimum edge 
weight to consider’ to -0.5, and set ‘The maximum edge weight to consider’ to 0.5. Press 
‘Execute Layout’ to run the layout algorithm (see, e.g., Fig. 5D). To increase the repulsion 
between neighboring nodes (for evenly spaced nodes within a cluster), increase ‘Default 
Node Mass’ under ‘Algorithm settings’. Although the network topology is generally 
preserved, different runs of the layout algorithm will yield slightly different results in terms 
of network rotation and local node placement. Additionally, with different data sets, it is 
not uncommon for the layout algorithm to generate a network that is logically flawed (i.e. 
with closely related nodes, as indicated by thick, dark blue edge lines, being distantly 
removed from each other). When this happens, simply re-execute the layout until a 
logically consistent network is rendered. 

Note: Another layout algorithm that can yield comparable results is the ‘Edge-weighted Spring Embedded’ 
algorithm. Before executing the layout, make sure the ‘Edge Weight Settings’ are adjusted as above. This 
layout algorithm can yield more evenly spaced nodes, but is less stable than ‘Force-Directed Layout’. Run a 
few times. 

11) Notice that all edges are slightly curved. To straighten edges, save and reopen the 
Cytoscape file (make sure you are using Cytoscape version 2.6.0 for this to work). If 
desired, rotate (go to ‘Select’ in the dropdown menu and press ‘Rotate’) and/or zoom the 
network until it looks aesthetic (see, e.g., Fig. 5E). Some nodes may overlap with others. 
You may be able to manually nudge them into view without substantially altering the 
network topology (e.g., Fig. 5E). 

12) To export the final network, go to ‘File’→’Export’→’Network View as Graphics…’. Then, 
select file format and save the image. 
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Anticipated Results 
The final fuzzy cluster network figure is shown in Fig. (5F). Note that nodes represent 
transcriptomes, edge weights represent the fraction of times that each pair of transcriptomes 
clustered together over all ensemble runs, and differently colored nodes represent discrete 
clusters from Protocol 2 Part 1 (Fig. 3). Clearly, iPSCs are more similar to each other than to 
ESCs, and vice versa. Two clusters distinguish iPSCs overexpressing Oct4, Sox2, and Esrrb 
(OSE) from iPSCs overexpressing Oct4, Sox2, and Klf4 (OSK) or Oct4, Sox2, Klf4, and Tbx3 
(OSKT). In addition, OSE lines 7 and 8 bridge both the OSE and OSK/OSKT lines, and OSK 
and OSKT lines are indistinguishable (at least at P < 0.1). These results are comparable to the 
hierarchical tree shown in Figure 3 of [12]. 
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Figure 5: How to render an AutoSOME fuzzy cluster network using Cytoscape, related to Protocol 2 Part 2. (A) 
After importing edges. (B) After importing nodes and changing node labels. (C) After adjusting node and edge 
settings. (D) After performing layout algorithm. (E) After re-opening file (to straighten edges) and rotating network. 
(F) Final network with iPSCs denoted by circles, ESCs denoted by squares, and color adjustment of R1_ESCs to 
orange. 

 



Stem Cell Gene Expression Analysis using AutoSOME    Computational Biology of Embryonic Stem Cells    21 

Conclusions 

Clustering is the process of partitioning information into useful categories. Although the human 
brain is endowed with powerful classification tools, our innate faculties for identifying data 
clusters are challenged by the massive, often high-dimensional, data sets made possible by 
twenty-first century high-throughput technologies. We developed a new unsupervised clustering 
method for genomics research, called AutoSOME, to overcome important limitations of common 
clustering methods, including poor scalability to large data sets, cluster shape restrictions, lack of 
outlier detection, and most importantly, inability to determine the number of data clusters [31]. 
In this chapter, we demonstrated how AutoSOME clustering can be applied to stem cell 
genomics research. Specifically, we presented a primer illustrating how to use the AutoSOME 
GUI for microarray filtration and normalization, and for "single step" co-expression and 
transcriptome clustering. In addition, we showed how one can visualize transcriptome variation 
among stem cell lines by rendering an AutoSOME fuzzy cluster network diagram. Taken 
together, the workflow proposed in this chapter has utility for studying gene expression 
signatures in diverse cellular phenotypes and systems, and should have broad application for 
clustering genomics data generated by diverse microarray platforms and massively parallel 
sequencers. 
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